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3.2 Determinants and Matrix Inverses

In this section, several theorems about determinants are derived. One consequence of these theorems is
that a square matrix A is invertible if and only if det A 6= 0. Moreover, determinants are used to give a
formula for A−1 which, in turn, yields a formula (called Cramer’s rule) for the solution of any system of
linear equations with an invertible coefficient matrix.

We begin with a remarkable theorem (due to Cauchy in 1812) about the determinant of a product of
matrices. The proof is given at the end of this section.

Theorem 3.2.1: Product Theorem

If A and B are n×n matrices, then det (AB) = det A det B.

The complexity of matrix multiplication makes the product theorem quite unexpected. Here is an
example where it reveals an important numerical identity.

Example 3.2.1

If A =

[
a b

−b a

]
and B =

[
c d

−d c

]
then AB =

[
ac−bd ad +bc

−(ad +bc) ac−bd

]
.

Hence det A det B = det (AB) gives the identity

(a2 +b2)(c2 +d2) = (ac−bd)2 +(ad +bc)2

Theorem 3.2.1 extends easily to det (ABC) = det A det B det C. In fact, induction gives

det (A1A2 · · ·Ak−1Ak) = det A1 det A2 · · · det Ak−1 det Ak

for any square matrices A1, . . . , Ak of the same size. In particular, if each Ai = A, we obtain

det (Ak) = (detA)k, for any k ≥ 1

We can now give the invertibility condition.

Theorem 3.2.2

An n×n matrix A is invertible if and only if det A 6= 0. When this is the case, det (A−1) = 1
det A

Proof. If A is invertible, then AA−1 = I; so the product theorem gives

1 = det I = det (AA−1) = det A det A−1

Hence, det A 6= 0 and also det A−1 = 1
det A

.
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Conversely, if det A 6= 0, we show that A can be carried to I by elementary row operations (and invoke
Theorem 2.4.5). Certainly, A can be carried to its reduced row-echelon form R, so R = Ek · · ·E2E1A where
the Ei are elementary matrices (Theorem 2.5.1). Hence the product theorem gives

det R = det Ek · · · det E2 det E1 det A

Since det E 6= 0 for all elementary matrices E, this shows det R 6= 0. In particular, R has no row of zeros,
so R = I because R is square and reduced row-echelon. This is what we wanted.

Example 3.2.2

For which values of c does A =




1 0 −c

−1 3 1
0 2c −4


 have an inverse?

Solution. Compute det A by first adding c times column 1 to column 3 and then expanding along
row 1.

det A = det




1 0 −c

−1 3 1
0 2c −4


= det




1 0 0
−1 3 1− c

0 2c −4


= 2(c+2)(c−3)

Hence, det A = 0 if c =−2 or c = 3, and A has an inverse if c 6=−2 and c 6= 3.

Example 3.2.3

If a product A1A2 · · ·Ak of square matrices is invertible, show that each Ai is invertible.

Solution. We have det A1 det A2 · · · det Ak = det (A1A2 · · ·Ak) by the product theorem, and
det (A1A2 · · ·Ak) 6= 0 by Theorem 3.2.2 because A1A2 · · ·Ak is invertible. Hence

det A1 det A2 · · · det Ak 6= 0

so det Ai 6= 0 for each i. This shows that each Ai is invertible, again by Theorem 3.2.2.

Theorem 3.2.3

If A is any square matrix, det AT = det A.

Proof. Consider first the case of an elementary matrix E. If E is of type I or II, then ET = E; so certainly
det ET = det E. If E is of type III, then ET is also of type III; so det ET = 1 = det E by Theorem 3.1.2.
Hence, det ET = det E for every elementary matrix E.

Now let A be any square matrix. If A is not invertible, then neither is AT ; so det AT = 0 = det A by
Theorem 3.2.2. On the other hand, if A is invertible, then A = Ek · · ·E2E1, where the Ei are elementary
matrices (Theorem 2.5.2). Hence, AT = ET

1 ET
2 · · ·ET

k so the product theorem gives
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det AT = det ET
1 det ET

2 · · · det ET
k = det E1 det E2 · · · det Ek

= det Ek · · · det E2 det E1

= det A

This completes the proof.

Example 3.2.4

If det A = 2 and det B = 5, calculate det (A3B−1AT B2).

Solution. We use several of the facts just derived.

det (A3B−1AT B2) = det (A3) det (B−1) det (AT ) det (B2)

= (det A)3 1
det B

det A(det B)2

= 23 · 1
5 ·2 ·5

2

= 80

Example 3.2.5

A square matrix is called orthogonal if A−1 = AT . What are the possible values of det A if A is
orthogonal?

Solution. If A is orthogonal, we have I = AAT . Take determinants to obtain

1 = det I = det (AAT ) = det A det AT = (det A)2

Since det A is a number, this means det A =±1.

Hence Theorems 2.6.4 and 2.6.5 imply that rotation about the origin and reflection about a line through
the origin in R2 have orthogonal matrices with determinants 1 and −1 respectively. In fact they are the
only such transformations of R2. We have more to say about this in Section 8.2.

Adjugates

In Section 2.4 we defined the adjugate of a 2× 2 matrix A =

[
a b

c d

]
to be adj (A) =

[
d −b

−c a

]
. Then

we verified that A(adj A) = (det A)I = (adj A)A and hence that, if det A 6= 0, A−1 = 1
det A

adj A. We are
now able to define the adjugate of an arbitrary square matrix and to show that this formula for the inverse
remains valid (when the inverse exists).

Recall that the (i, j)-cofactor ci j(A) of a square matrix A is a number defined for each position (i, j)
in the matrix. If A is a square matrix, the cofactor matrix of A is defined to be the matrix

[
ci j(A)

]
whose

(i, j)-entry is the (i, j)-cofactor of A.
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Definition 3.3 Adjugate of a Matrix

The adjugate4of A, denoted adj (A), is the transpose of this cofactor matrix; in symbols,

adj (A) =
[
ci j(A)

]T

This agrees with the earlier definition for a 2×2 matrix A as the reader can verify.

Example 3.2.6

Compute the adjugate of A =




1 3 −2
0 1 5
−2 −6 7


 and calculate A(adj A) and (adj A)A.

Solution. We first find the cofactor matrix.




c11(A) c12(A) c13(A)
c21(A) c22(A) c23(A)
c31(A) c32(A) c33(A)


=




∣∣∣∣
1 5
−6 7

∣∣∣∣ −
∣∣∣∣

0 5
−2 7

∣∣∣∣
∣∣∣∣

0 1
−2 −6

∣∣∣∣

−
∣∣∣∣

3 −2
−6 7

∣∣∣∣
∣∣∣∣

1 −2
−2 7

∣∣∣∣ −
∣∣∣∣

1 3
−2 −6

∣∣∣∣
∣∣∣∣

3 −2
1 5

∣∣∣∣ −
∣∣∣∣

1 −2
0 5

∣∣∣∣
∣∣∣∣

1 3
0 1

∣∣∣∣




=




37 −10 2
−9 3 0
17 −5 1




Then the adjugate of A is the transpose of this cofactor matrix.

adj A =




37 −10 2
−9 3 0
17 −5 1




T

=




37 −9 17
−10 3 −5

2 0 1




The computation of A(adj A) gives

A(adj A) =




1 3 −2
0 1 5
−2 −6 7






37 −9 17
−10 3 −5

2 0 1


=




3 0 0
0 3 0
0 0 3


= 3I

and the reader can verify that also (adj A)A = 3I. Hence, analogy with the 2×2 case would
indicate that det A = 3; this is, in fact, the case.

The relationship A(adj A) = (det A)I holds for any square matrix A. To see why this is so, consider

4This is also called the classical adjoint of A, but the term “adjoint” has another meaning.
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the general 3×3 case. Writing ci j(A) = ci j for short, we have

adj A =




c11 c12 c13

c21 c22 c23

c31 c32 c33




T

=




c11 c21 c31

c12 c22 c32

c13 c23 c33




If A =
[
ai j

]
in the usual notation, we are to verify that A(adj A) = (det A)I. That is,

A(adj A) =




a11 a12 a13

a21 a22 a23

a31 a32 a33






c11 c21 c31

c12 c22 c32

c13 c23 c33


=




det A 0 0
0 det A 0
0 0 det A




Consider the (1, 1)-entry in the product. It is given by a11c11+a12c12+a13c13, and this is just the cofactor
expansion of det A along the first row of A. Similarly, the (2, 2)-entry and the (3, 3)-entry are the cofactor
expansions of det A along rows 2 and 3, respectively.

So it remains to be seen why the off-diagonal elements in the matrix product A(adj A) are all zero.
Consider the (1, 2)-entry of the product. It is given by a11c21 + a12c22 + a13c23. This looks like the
cofactor expansion of the determinant of some matrix. To see which, observe that c21, c22, and c23 are
all computed by deleting row 2 of A (and one of the columns), so they remain the same if row 2 of A is
changed. In particular, if row 2 of A is replaced by row 1, we obtain

a11c21 +a12c22 +a13c23 = det




a11 a12 a13

a11 a12 a13

a31 a32 a33


= 0

where the expansion is along row 2 and where the determinant is zero because two rows are identical. A
similar argument shows that the other off-diagonal entries are zero.

This argument works in general and yields the first part of Theorem 3.2.4. The second assertion follows
from the first by multiplying through by the scalar 1

det A
.

Theorem 3.2.4: Adjugate Formula

If A is any square matrix, then

A(adj A) = (det A)I = (adj A)A

In particular, if det A 6= 0, the inverse of A is given by

A−1 = 1
det A

adj A

It is important to note that this theorem is not an efficient way to find the inverse of the matrix A. For
example, if A were 10×10, the calculation of adj A would require computing 102 = 100 determinants of
9× 9 matrices! On the other hand, the matrix inversion algorithm would find A−1 with about the same
effort as finding det A. Clearly, Theorem 3.2.4 is not a practical result: its virtue is that it gives a formula
for A−1 that is useful for theoretical purposes.
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Example 3.2.7

Find the (2, 3)-entry of A−1 if A =




2 1 3
5 −7 1
3 0 −6


.

Solution. First compute

det A =

∣∣∣∣∣∣

2 1 3
5 −7 1
3 0 −6

∣∣∣∣∣∣
=

∣∣∣∣∣∣

2 1 7
5 −7 11
3 0 0

∣∣∣∣∣∣
= 3

∣∣∣∣
1 7
−7 11

∣∣∣∣= 180

Since A−1 = 1
det A

adj A = 1
180

[
ci j(A)

]T
, the (2, 3)-entry of A−1 is the (3, 2)-entry of the matrix

1
180

[
ci j(A)

]
; that is, it equals 1

180c32(A) =
1

180

(
−
∣∣∣∣

2 3
5 1

∣∣∣∣
)
= 13

180 .

Example 3.2.8

If A is n×n, n≥ 2, show that det (adj A) = (det A)n−1.

Solution. Write d = det A; we must show that det (adj A) = dn−1. We have A(adj A) = dI by
Theorem 3.2.4, so taking determinants gives d det (adj A) = dn. Hence we are done if d 6= 0.
Assume d = 0; we must show that det (adj A) = 0, that is, adj A is not invertible. If A 6= 0, this
follows from A(adj A) = dI = 0; if A = 0, it follows because then adj A = 0.

Cramer’s Rule

Theorem 3.2.4 has a nice application to linear equations. Suppose

Ax = b

is a system of n equations in n variables x1, x2, . . . , xn. Here A is the n×n coefficient matrix, and x and b

are the columns

x =




x1

x2
...

xn


 and b =




b1

b2
...

bn




of variables and constants, respectively. If det A 6= 0, we left multiply by A−1 to obtain the solution
x = A−1b. When we use the adjugate formula, this becomes




x1

x2
...

xn


= 1

det A
(adj A)b
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= 1
det A




c11(A) c21(A) · · · cn1(A)
c12(A) c22(A) · · · cn2(A)

...
...

...
c1n(A) c2n(A) · · · cnn(A)







b1

b2
...

bn




Hence, the variables x1, x2, . . . , xn are given by

x1 =
1

det A
[b1c11(A)+b2c21(A)+ · · ·+bncn1(A)]

x2 =
1

det A
[b1c12(A)+b2c22(A)+ · · ·+bncn2(A)]

...
...

xn =
1

det A
[b1c1n(A)+b2c2n(A)+ · · ·+bncnn(A)]

Now the quantity b1c11(A)+b2c21(A)+ · · ·+bncn1(A) occurring in the formula for x1 looks like the
cofactor expansion of the determinant of a matrix. The cofactors involved are c11(A), c21(A), . . . , cn1(A),
corresponding to the first column of A. If A1 is obtained from A by replacing the first column of A by b,
then ci1(A1) = ci1(A) for each i because column 1 is deleted when computing them. Hence, expanding
det (A1) by the first column gives

det A1 = b1c11(A1)+b2c21(A1)+ · · ·+bncn1(A1)

= b1c11(A)+b2c21(A)+ · · ·+bncn1(A)

= (det A)x1

Hence, x1 =
det A1
det A

and similar results hold for the other variables.

Theorem 3.2.5: Cramer’s Rule5

If A is an invertible n×n matrix, the solution to the system

Ax = b

of n equations in the variables x1, x2, . . . , xn is given by

x1 =
det A1
det A

, x2 =
det A2
det A

, · · · , xn =
det An

det A

where, for each k, Ak is the matrix obtained from A by replacing column k by b.

Example 3.2.9

Find x1, given the following system of equations.

5x1 + x2− x3 = 4
9x1 + x2− x3 = 1

x1− x2 + 5x3 = 2

5Gabriel Cramer (1704–1752) was a Swiss mathematician who wrote an introductory work on algebraic curves. He popu-
larized the rule that bears his name, but the idea was known earlier.
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Solution. Compute the determinants of the coefficient matrix A and the matrix A1 obtained from it
by replacing the first column by the column of constants.

det A = det




5 1 −1
9 1 −1
1 −1 5


=−16

det A1 = det




4 1 −1
1 1 −1
2 −1 5


= 12

Hence, x1 =
det A1
det A

=−3
4 by Cramer’s rule.

Cramer’s rule is not an efficient way to solve linear systems or invert matrices. True, it enabled us to
calculate x1 here without computing x2 or x3. Although this might seem an advantage, the truth of the
matter is that, for large systems of equations, the number of computations needed to find all the variables
by the gaussian algorithm is comparable to the number required to find one of the determinants involved in
Cramer’s rule. Furthermore, the algorithm works when the matrix of the system is not invertible and even
when the coefficient matrix is not square. Like the adjugate formula, then, Cramer’s rule is not a practical
numerical technique; its virtue is theoretical.

Polynomial Interpolation

Example 3.2.10

0 5 10 12 15

2

4

6

(5, 3)

(10, 5)
(15, 6)

Diameter

Age

A forester wants to estimate the age (in years) of a tree by measuring
the diameter of the trunk (in cm). She obtains the following data:

Tree 1 Tree 2 Tree 3
Trunk Diameter 5 10 15
Age 3 5 6

Estimate the age of a tree with a trunk diameter of 12 cm.

Solution.

The forester decides to “fit” a quadratic polynomial

p(x) = r0 + r1x+ r2x2

to the data, that is choose the coefficients r0, r1, and r2 so that p(5) = 3, p(10) = 5, and p(15) = 6,
and then use p(12) as the estimate. These conditions give three linear equations:

r0 + 5r1 + 25r2 = 3
r0 + 10r1 + 100r2 = 5
r0 + 15r1 + 225r2 = 6
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The (unique) solution is r0 = 0, r1 =
7

10 , and r2 =− 1
50 , so

p(x) = 7
10x− 1

50x2 = 1
50x(35− x)

Hence the estimate is p(12) = 5.52.

As in Example 3.2.10, it often happens that two variables x and y are related but the actual functional
form y = f (x) of the relationship is unknown. Suppose that for certain values x1, x2, . . . , xn of x the
corresponding values y1, y2, . . . , yn are known (say from experimental measurements). One way to
estimate the value of y corresponding to some other value a of x is to find a polynomial6

p(x) = r0 + r1x+ r2x2 + · · ·+ rn−1xn−1

that “fits” the data, that is p(xi) = yi holds for each i = 1, 2, . . . , n. Then the estimate for y is p(a). As we
will see, such a polynomial always exists if the xi are distinct.

The conditions that p(xi) = yi are

r0 + r1x1 + r2x2
1 + · · ·+ rn−1xn−1

1 = y1

r0 + r1x2 + r2x2
2 + · · ·+ rn−1xn−1

2 = y2
...

...
...

...
...

r0 + r1xn + r2x2
n + · · ·+ rn−1xn−1

n = yn

In matrix form, this is 


1 x1 x2
1 · · · xn−1

1
1 x2 x2

2 · · · xn−1
2

...
...

...
...

1 xn x2
n · · · xn−1

n







r0

r1
...

rn−1


=




y1

y2
...

yn


 (3.3)

It can be shown (see Theorem 3.2.7) that the determinant of the coefficient matrix equals the product of
all terms (xi− x j) with i > j and so is nonzero (because the xi are distinct). Hence the equations have a
unique solution r0, r1, . . . , rn−1. This proves

Theorem 3.2.6

Let n data pairs (x1, y1), (x2, y2), . . . , (xn, yn) be given, and assume that the xi are distinct. Then
there exists a unique polynomial

p(x) = r0 + r1x+ r2x2 + · · ·+ rn−1xn−1

such that p(xi) = yi for each i = 1, 2, . . . , n.

The polynomial in Theorem 3.2.6 is called the interpolating polynomial for the data.

6A polynomial is an expression of the form a0 + a1x+ a2x2 + · · ·+ anxn where the ai are numbers and x is a variable. If
an 6= 0, the integer n is called the degree of the polynomial, and an is called the leading coefficient. See Appendix D.
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We conclude by evaluating the determinant of the coefficient matrix in Equation 3.3. If a1, a2, . . . , an

are numbers, the determinant

det




1 a1 a2
1 · · · an−1

1
1 a2 a2

2 · · · an−1
2

1 a3 a2
3 · · · an−1

3
...

...
...

...
1 an a2

n · · · an−1
n




is called a Vandermonde determinant.7 There is a simple formula for this determinant. If n = 2, it equals
(a2−a1); if n = 3, it is (a3−a2)(a3−a1)(a2−a1) by Example 3.1.8. The general result is the product

∏
1≤ j<i≤n

(ai−a j)

of all factors (ai−a j) where 1≤ j < i≤ n. For example, if n = 4, it is

(a4−a3)(a4−a2)(a4−a1)(a3−a2)(a3−a1)(a2−a1)

Theorem 3.2.7

Let a1, a2, . . . , an be numbers where n≥ 2. Then the corresponding Vandermonde determinant is
given by

det




1 a1 a2
1 · · · an−1

1
1 a2 a2

2 · · · an−1
2

1 a3 a2
3 · · · an−1

3
...

...
...

...
1 an a2

n · · · an−1
n



= ∏

1≤ j<i≤n

(ai−a j)

Proof. We may assume that the ai are distinct; otherwise both sides are zero. We proceed by induction on
n≥ 2; we have it for n = 2, 3. So assume it holds for n−1. The trick is to replace an by a variable x, and
consider the determinant

p(x) = det




1 a1 a2
1 · · · an−1

1
1 a2 a2

2 · · · an−1
2

...
...

...
...

1 an−1 a2
n−1 · · · an−1

n−1
1 x x2 · · · xn−1




Then p(x) is a polynomial of degree at most n− 1 (expand along the last row), and p(ai) = 0 for each
i = 1, 2, . . . , n− 1 because in each case there are two identical rows in the determinant. In particular,
p(a1) = 0, so we have p(x) = (x−a1)p1(x) by the factor theorem (see Appendix D). Since a2 6= a1, we
obtain p1(a2) = 0, and so p1(x) = (x−a2)p2(x). Thus p(x) = (x−a1)(x−a2)p2(x). As the ai are distinct,
this process continues to obtain

p(x) = (x−a1)(x−a2) · · ·(x−an−1)d (3.4)

7Alexandre Théophile Vandermonde (1735–1796) was a French mathematician who made contributions to the theory of
equations.
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where d is the coefficient of xn−1 in p(x). By the cofactor expansion of p(x) along the last row we get

d = (−1)n+n det




1 a1 a2
1 · · · an−2

1
1 a2 a2

2 · · · an−2
2

...
...

...
...

1 an−1 a2
n−1 · · · an−2

n−1




Because (−1)n+n = 1 the induction hypothesis shows that d is the product of all factors (ai−a j) where
1≤ j < i≤ n−1. The result now follows from Equation 3.4 by substituting an for x in p(x).

Proof of Theorem 3.2.1. If A and B are n×n matrices we must show that

det (AB) = det A det B (3.5)

Recall that if E is an elementary matrix obtained by doing one row operation to In, then doing that operation
to a matrix C (Lemma 2.5.1) results in EC. By looking at the three types of elementary matrices separately,
Theorem 3.1.2 shows that

det (EC) = det E det C for any matrix C (3.6)

Thus if E1, E2, . . . , Ek are all elementary matrices, it follows by induction that

det (Ek · · ·E2E1C) = det Ek · · · det E2 det E1 det C for any matrix C (3.7)

Lemma. If A has no inverse, then det A = 0.

Proof. Let A→ R where R is reduced row-echelon, say En · · ·E2E1A = R. Then R has a row of zeros by
Part (4) of Theorem 2.4.5, and hence det R = 0. But then Equation 3.7 gives det A = 0 because det E 6= 0
for any elementary matrix E. This proves the Lemma.

Now we can prove Equation 3.5 by considering two cases.

Case 1. A has no inverse. Then AB also has no inverse (otherwise A[B(AB)−1] = I) so A is invertible by
Corollary 2.4.2 to Theorem 2.4.5. Hence the above Lemma (twice) gives

det (AB) = 0 = 0 det B = det A det B

proving Equation 3.5 in this case.

Case 2. A has an inverse. Then A is a product of elementary matrices by Theorem 2.5.2, say A =
E1E2 · · ·Ek. Then Equation 3.7 with C = I gives

det A = det (E1E2 · · ·Ek) = det E1 det E2 · · · det Ek

But then Equation 3.7 with C = B gives

det (AB) = det [(E1E2 · · ·Ek)B] = det E1 det E2 · · · det Ek det B = det A det B

and Equation 3.5 holds in this case too.
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Exercises for 3.2

Exercise 3.2.1 Find the adjugate of each of the follow-
ing matrices.




5 1 3
−1 2 3

1 4 8


a.




1 −1 2
3 1 0
0 −1 1


b.




1 0 −1
−1 1 0

0 −1 1


c. 1

3



−1 2 2

2 −1 2
2 2 −1


d.

Exercise 3.2.2 Use determinants to find which real val-
ues of c make each of the following matrices invertible.




1 0 3
3 −4 c

2 5 8


a.




0 c −c

−1 2 1
c −c c


b.




c 1 0
0 2 c

−1 c 5


c.




4 c 3
c 2 c

5 c 4


d.




1 2 −1
0 −1 c

2 c 1


e.




1 c −1
c 1 1
0 1 c


f.

Exercise 3.2.3 Let A, B, and C denote n× n matrices
and assume that det A = −1, det B = 2, and det C = 3.
Evaluate:

det (A3BCT B−1)a. det (B2C−1AB−1CT )b.

Exercise 3.2.4 Let A and B be invertible n×n matrices.
Evaluate:

det (B−1AB)a. det (A−1B−1AB)b.

Exercise 3.2.5 If A is 3× 3 and det (2A−1) = −4 and
det (A3(B−1)T ) =−4, find det A and det B.

Exercise 3.2.6 Let A =




a b c

p q r

u v w


 and assume that

det A = 3. Compute:

a. det (2B−1) where B =




4u 2a −p

4v 2b −q

4w 2c −r




b. det (2C−1) where C =




2p −a+u 3u

2q −b+ v 3v

2r −c+w 3w




Exercise 3.2.7 If det

[
a b

c d

]
=−2 calculate:

a. det




2 −2 0
c+1 −1 2a

d−2 2 2b




b. det




2b 0 4d

1 2 −2
a+1 2 2(c−1)




c. det (3A−1) where A =

[
3c a+ c

3d b+d

]

Exercise 3.2.8 Solve each of the following by Cramer’s
rule:

2x + y= 1
3x + 7y=−2

a.
3x + 4y = 9
2x− y=−1

b.

5x + y− z=−7
2x− y− 2z = 6
3x + 2z =−7

c.
4x− y+ 3z= 1
6x + 2y− z= 0
3x + 3y + 2z=−1

d.

Exercise 3.2.9 Use Theorem 3.2.4 to find the (2, 3)-
entry of A−1 if:

A =




3 2 1
1 1 2
−1 2 1


a. A =




1 2 −1
3 1 1
0 4 7


b.

Exercise 3.2.10 Explain what can be said about det A

if:

A2 = Aa. A2 = Ib.

A3 = Ac. PA = P and P is
invertible

d.

A2 = uA and A is n×ne. A =−AT and A is n×
n

f.

A2 + I = 0 and A is
n×n

g.
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Exercise 3.2.11 Let A be n×n. Show that uA = (uI)A,
and use this with Theorem 3.2.1 to deduce the result in
Theorem 3.1.3: det (uA) = un det A.

Exercise 3.2.12 If A and B are n× n matrices, if AB =
−BA, and if n is odd, show that either A or B has no in-
verse.

Exercise 3.2.13 Show that det AB = det BA holds for
any two n×n matrices A and B.

Exercise 3.2.14 If Ak = 0 for some k ≥ 1, show that A

is not invertible.

Exercise 3.2.15 If A−1 = AT , describe the cofactor ma-
trix of A in terms of A.

Exercise 3.2.16 Show that no 3×3 matrix A exists such
that A2+ I = 0. Find a 2×2 matrix A with this property.

Exercise 3.2.17 Show that det (A+BT ) = det (AT +B)
for any n×n matrices A and B.

Exercise 3.2.18 Let A and B be invertible n×n matrices.
Show that det A = det B if and only if A =UB where U

is a matrix with det U = 1.

Exercise 3.2.19 For each of the matrices in Exercise 2,
find the inverse for those values of c for which it exists.

Exercise 3.2.20 In each case either prove the statement
or give an example showing that it is false:

a. If adj A exists, then A is invertible.

b. If A is invertible and adj A = A−1, then det A = 1.

c. det (AB) = det (BT A).

d. If det A 6= 0 and AB = AC, then B =C.

e. If AT =−A, then det A =−1.

f. If adj A = 0, then A = 0.

g. If A is invertible, then adj A is invertible.

h. If A has a row of zeros, so also does adj A.

i. det (AT A)> 0 for all square matrices A.

j. det (I+A) = 1+ det A.

k. If AB is invertible, then A and B are invertible.

l. If det A = 1, then adj A = A.

m. If A is invertible and det A = d, then adj A =
dA−1.

Exercise 3.2.21 If A is 2× 2 and det A = 0, show that
one column of A is a scalar multiple of the other. [Hint:
Definition 2.5 and Part (2) of Theorem 2.4.5.]

Exercise 3.2.22 Find a polynomial p(x) of degree 2
such that:

a. p(0) = 2, p(1) = 3, p(3) = 8

b. p(0) = 5, p(1) = 3, p(2) = 5

Exercise 3.2.23 Find a polynomial p(x) of degree 3
such that:

a. p(0) = p(1) = 1, p(−1) = 4, p(2) =−5

b. p(0) = p(1) = 1, p(−1) = 2, p(−2) =−3

Exercise 3.2.24 Given the following data pairs, find
the interpolating polynomial of degree 3 and estimate the
value of y corresponding to x = 1.5.

a. (0, 1), (1, 2), (2, 5), (3, 10)

b. (0, 1), (1, 1.49), (2, −0.42), (3, −11.33)

c. (0, 2), (1, 2.03), (2, −0.40), (−1, 0.89)

Exercise 3.2.25 If A =




1 a b

−a 1 c

−b −c 1


 show that

det A = 1+ a2 + b2 + c2. Hence, find A−1 for any a, b,
and c.

Exercise 3.2.26

a. Show that A =




a p q

0 b r

0 0 c


 has an inverse if and

only if abc 6= 0, and find A−1 in that case.

b. Show that if an upper triangular matrix is invert-
ible, the inverse is also upper triangular.

Exercise 3.2.27 Let A be a matrix each of whose entries
are integers. Show that each of the following conditions
implies the other.

1. A is invertible and A−1 has integer entries.

2. det A = 1 or −1.
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Exercise 3.2.28 If A−1 =




3 0 1
0 2 3
3 1 −1


 find adj A.

Exercise 3.2.29 If A is 3 × 3 and det A = 2, find
det (A−1 +4 adj A).

Exercise 3.2.30 Show that det

[
0 A

B X

]
= det A det B

when A and B are 2×2. What if A and B are 3×3?

[Hint: Block multiply by

[
0 I

I 0

]
.]

Exercise 3.2.31 Let A be n×n, n ≥ 2, and assume one
column of A consists of zeros. Find the possible values
of rank (adj A).

Exercise 3.2.32 If A is 3× 3 and invertible, compute
det (−A2(adj A)−1).

Exercise 3.2.33 Show that adj (uA) = un−1 adj A for all
n×n matrices A.

Exercise 3.2.34 Let A and B denote invertible n×n ma-
trices. Show that:

a. adj (adj A) = (det A)n−2A (here n≥ 2) [Hint: See
Example 3.2.8.]

b. adj (A−1) = (adj A)−1

c. adj (AT ) = (adj A)T

d. adj (AB) = (adj B)(adj A) [Hint: Show that
AB adj (AB) = AB adj B adj A.]

3.3 Diagonalization and Eigenvalues

The world is filled with examples of systems that evolve in time—the weather in a region, the economy
of a nation, the diversity of an ecosystem, etc. Describing such systems is difficult in general and various
methods have been developed in special cases. In this section we describe one such method, called diag-

onalization, which is one of the most important techniques in linear algebra. A very fertile example of
this procedure is in modelling the growth of the population of an animal species. This has attracted more
attention in recent years with the ever increasing awareness that many species are endangered. To motivate
the technique, we begin by setting up a simple model of a bird population in which we make assumptions
about survival and reproduction rates.

Example 3.3.1

Consider the evolution of the population of a species of birds. Because the number of males and
females are nearly equal, we count only females. We assume that each female remains a juvenile
for one year and then becomes an adult, and that only adults have offspring. We make three
assumptions about reproduction and survival rates:

1. The number of juvenile females hatched in any year is twice the number of adult females
alive the year before (we say the reproduction rate is 2).

2. Half of the adult females in any year survive to the next year (the adult survival rate is 1
2).

3. One quarter of the juvenile females in any year survive into adulthood (the juvenile survival

rate is 1
4).

If there were 100 adult females and 40 juvenile females alive initially, compute the population of
females k years later.


